
J. Freeman   FNAL  Oct 17, 2003 1

Calorimeters for SLHC and VLHCCalorimeters for SLHC and VLHC

Calorimeters for the SLHC and 
VLHC

Jim Freeman

Fermilab



J. Freeman   FNAL  Oct 17, 2003 2

Mass Reach Mass Reach vsvs energy and Lenergy and L

10
32

10
33

10
34

10
35

10
3

10
4

Luminosity(/cm2sec)

M
Z'

(G
eV

)

N=100 Events, Z' Coupling

 
2 TeV
 
14 TeV
 
28 TeV
 
100 TeV

VLHC

LHC

Tevatron



J. Freeman   FNAL  Oct 17, 2003 3

SLHC Detector EnvironmentSLHC Detector Environment

LHC                SLHC

√s                                     14 TeV             14 TeV
L                                      1034 1035

100                   1000 

Bunch spacing dt             25 ns                12.5 ns 

N. interactions/x-ing      ~ 20                    ~ 100

dNch/dη per x-ing           ~ 100                  ~ 500

Tracker occupancy             1                    5
Pile-up noise                      1                   ~2.2
Dose central region            1                     10

Bunch spacing reduced 2x. Interactions/crossing 
increased 5 x. Pileup noise increased by 2.2x if 
crossings are time resolvable.

2/( sec)cm ⋅ 2/( sec)cm ⋅
1 /fb yr− 1 /fb yr−

Ldt∫
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VLHC Detector EnvironmentVLHC Detector Environment

LHC                VLHC

√s                                     14 TeV             100 TeV
L                                      1034 1034

100                   100 

Bunch spacing dt             25 ns                19 ns 

N. interactions/x-ing      ~ 20                   ~ 25**

dNch/dη per x-ing           ~ 100                 ~ 250**

Tracker occupancy             1                    2.5**
Pile-up noise                      1                    2.5**
Dose central region            1                    5**

** 130 mB inelastic cross section, <Nch> ~ 10, <Et> = 1GeV

2/( sec)cm ⋅ 2/( sec)cm ⋅
1 /fb yr− 1 /fb yr−

Ldt∫
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ATLAS  CalorimetersATLAS  Calorimeters
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ATLAS CalorimeterATLAS Calorimeter

TileCal

TileCal
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ATLAS LAr : the basic structureATLAS LAr : the basic structure

Argon double gap 2x2 mm

Thickness of absorber plates: 
1.1mm for pseudorapidities > 0.8 
and 1.5 mm close to the center of 
the detetctor: total of ~26 X0
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ATLAS FCALATLAS FCAL
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ATLAS FCALATLAS FCAL
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Atlas LAr CalorimeterAtlas LAr Calorimeter

Closing of 1st wheel
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ATLAS ATLAS TilecalTilecal

Fe/Scint/WLS fiber

4:1 Fe:Scint
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ATLAS TILECALATLAS TILECAL
36 modules of +/-
endcaps, central 
wheel
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CMS calo structureCMS calo structure
•PWO Light Yield is rather
low: ~10 pe/MeV
so photon sensors with
some amplification are 
needed
(Avalanche PhotoDiodes in 
the barrel, 
VacuumPhotoTriodes in the
Endcap)
⇒Low S/N ratio and
complex electronic
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CMS ECAL Light readoutCMS ECAL Light readout
E SiSi33NN44, SiO, SiO22, contact, contact

pp++++ photon conversionphoton conversion
p ep e-- accelerationacceleration

n en e-- multiplicationmultiplication

nn-- ee-- driftdrift

nn++++ ee-- collectioncollection

contactcontact

γγ

2020

Two Two APDsAPDs per capsuleper capsule

Internal gain=50 for V=380 VInternal gain=50 for V=380 V

Single stageSingle stage photomultiplierphotomultiplier tubetube

φ = 26.5 mm

MESH ANODE

Gain 8Gain 8--10 at B=4T, QE ̃  20% at 420 nm10 at B=4T, QE ̃  20% at 420 nmBarrell: 50% delivered

ENDCAP:
25% delivered
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CMS ECALCMS ECAL

~20000 barrel crystals accepted

First supermodule assembled in 
spring 2002 (5 by end 2003)

2 in one!
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CMS CMS HCALsHCALs
Had Barrel: HB

Had Endcaps:HE

Had Forward: HF

HB

HE
HF

HO
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HCAL : HE and HBHCAL : HE and HB

HE HB
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Optical Design for CMS Optical Design for CMS HCALsHCALs

Common Technology for HB, HE, HO
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HF detectorHF detector

HAD (143 cm)

EM (165 cm)

5mm
To cope with high radiation levels (>1 
Grad accumulated in 10 years) the 
active part is  Quartz fibers: the 
energy measured through the 
Cerenkov light generated by shower 
particles.

Iron calorimeter 
Covers  5 > η > 3 
Total of 1728 towers, i.e.
2 x 432 towers for EM and HAD
η x φ segmentation (0.175 x 0.175)
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HF Fiber stuffing at CERNHF Fiber stuffing at CERN
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Issues for SLHCIssues for SLHC
Radiation Damage
Rate Effects
Bunch ID determination
Activation/access
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Scintillator Scintillator -- Dose/DamageDose/Damage

Scintillator under irradiation forms 
Color centers which reduce the  
Collected light output (transmission loss). 
 
LY ~ exp[-D/Do], Do ~ 4 Mrad 

Current operational limit ~ 5 Mrad
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Radiation damage to scintillatorsRadiation damage to scintillators
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Barrel doses are not a problem. For the endcaps a 
technology change may be needed for 2 < |y| < 3 for 
the CMS HCAL.
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SLHC: ATLAS SLHC: ATLAS 
ATLAS: 

Space charge effects: if drifting ions start 
modifying the field near the anode signal is
affected (onset of regime goes like V2/d4µ, V 
volt, d gap and µ ion mobility). Measurements 
in test beam show 1% loss with energy flow 
5 106 GeVcm-2s-1

Might decide to
use cold
pressurized gas or 
LKr in this region!
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SLHC, ATLAS cont.SLHC, ATLAS cont.
Voltage drop due to ionization currents: the 
HV supply chain has resistors meant to
decouple the various electrodes. At low 
temperature the value of the resistor
increases by a factor 10 (possibly with large
fluctuation).

Cold
pressurized 
gas will do…
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Bunch ID: CMS HB Pulse Shape Bunch ID: CMS HB Pulse Shape 

100 GeV electrons. 25ns bins. Each histo is average 
pulse shape, phased +1ns to LHC clock

12 ns difference between circled histo’sà no 
problem with bunch ID
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Timing using calorimeter pulse shapeTiming using calorimeter pulse shape
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CMS HE

Calculated event time (vertical scale) vs actual event time. CMS HE, 
100GeV pions. Also works for lAr. DO timing resolution 4ns/E (in 
GeV). Watch pile-up though. The faster the calorimeter, the less 
important pile-up will be.

2003 Test Beam



J. Freeman   FNAL  Oct 17, 2003 29

What about ATLAS? What about ATLAS? 

300 GeV π 
2003 Test Beam, 1ns bins

Atlas lAr EM Calorimeter
CMS HE Calorimeter

Not so different, after 
shaping. Bunch ID should 
be no problem
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HF Cerenkov Calorimeter Pulse ShapeHF Cerenkov Calorimeter Pulse Shape

25 ns

CMS HF 
Calorimeter 
2003 Test Beam

Intrinsically 
very fast



J. Freeman   FNAL  Oct 17, 2003 31

Activation and Radiation Exposure LimitsActivation and Radiation Exposure Limits
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Activation in “forward” RegionActivation in “forward” Region
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Activation in “Activation in “endcapendcap” Region” Region
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ATLAS/CMS at SLHCATLAS/CMS at SLHC
Both detectors will have problems in the endcap
region.
ATLAS à rate problems. Replace lAr for η>1.5 ?
CMS à radiation damage problems in endcap. 
New scintillators? Or new technology?
Activation of endcap/forward calorimeters will 
severely limit possible maintenance. à
Maintenance free?

à New R&D
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Profitable R&D Directions?Profitable R&D Directions?
Cerenkov calorimeters are rad-hard and fast à
good candidates for future colliders

Quartz fiber or plate
Gas cerenkov 

New photon detectors à low cost, small, rad-hard
Red-sensitive HPDs
Geiger-mode photodiodes

New scintillator materials à rad-hard
New directions: 

“Spacal” with liquid scintillator capillaries coupled to 
quartz fiber light guides?
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New Calorimeter New Calorimeter àà Energy FlowEnergy Flow

Use tracking to improve jet response
New calorimeters should be designed with 
this in mind.
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Jet Jet ResRes improvement using tracking. CMS improvement using tracking. CMS 
4T B field4T B field
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Jet improvement by using tracking infoJet improvement by using tracking info

Tracking from CMS, ECAL 5% stochastic, 1% 
constant, and HCAL 50% stochastic and 3% constant.
Note that a jet has <zmax> ~ 0.22. For charged particles 
< 100 GeV (jets < 0.5 TeV) use tracks to measure E.
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Tracking
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For present energy 
scales at the LHC use 
tracker energy 
measurement if 
possible. At a VLHC 
this will not help. 
(Without substantial 
improvements in 
tracking)

“Energy Flow”
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Energy Flow Jet ImprovementEnergy Flow Jet Improvement
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Improved Dijet MassImproved Dijet Mass
There is a ~ 22 % 
improvement in the dijet 
mass resolution. Implies 
that calorimeter resolution 
is not the whole story. 
(Final State radiation)
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New CalorimeterNew Calorimeter

Issues for designing new calorimeter for 
VLHC
Review the basics
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Transverse Size Transverse Size -- HCALHCAL
Shower size

limits
the number of
resolvable 
“particles” in a
jet, especially the
dense “core” of 
a jet. Limits set
to “energy flow”

5 cm reasonable.
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Hadron Cascades and Energy FlowHadron Cascades and Energy Flow

Layer #
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Large Fluctuations in longitudinal development of hadron showers set limits 
on utility of depth segmentation. à fine longitudinal depth segmentation 
only samples intrinsic fluctuations in shower development

SDC Hanging File Calorimeter Data. 96 layers of scintillator, each 
read out with separate pmt.
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Intrinsic Limitations to ContainmentIntrinsic Limitations to Containment

Jet “splitting”, g -> QQ and Q -> qlv, puts 
intrinsic limit on required depth. Jets 
themselves “leak”.
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Gluon Jet of 500 GeV, Missing Energy in 10,000 Jets

Missing Energy (GeV)

Events/8 GeV

# Jets 
with 
energy > 
Missing 
ET

Jets “leak” 
too – 0.1 % 
will lose > 
½ of the 
energy due 
to splitting.
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Calorimeter Depth RequirementsCalorimeter Depth Requirements

CCFR Data 

200 GeV π

Relative Resolution vs depth

Eleak/Eν as a function of depth.  
Hatched area is where neutrinos 
dominate

10 TeV jets

Conclusion à no gain for 
calorimeters thicker than 
~ 10-12 λ
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Effects of Final State RadiationEffects of Final State Radiation

No detector simulation Full detector simulation
Z’s at the LHC in “CMS” detector
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LHC LHC –– CMS Study of FSRCMS Study of FSR
MJJ/Mo plots for
dijets in CMS with and
without FSR. The 
dominant effect of FSR
is clear.
The d(M/Mo)/(M/Mo)
rms rises from 
~ 11% to ~ 19%, the 
distribution shifts to
smaller M/Mo,  and a
radiative low mass tail 
becomes evident.

dM/M

M/Mo
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Hadron ColliderHadron Collider-- Dijet Dijet dMdM/M/M
A series of Monte Carlo studies were done in order to 
identify the elements contributing to the mass error. 
Events are low PT, Z -> JJ. dM/M ~ 13% without FSR.

Z -> JJ , Mass Resolution 

dE (Calor)

Fragmentation

Underlying Event

Radiation

B = 4 T

FSR is the 
biggest effect. 
The 
underlying 
event is the 
second largest 
error (if cone 
R ~ 0.7). 
Calorimeter 
resolution is a 
minor effect.
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Effects of Pileup Events Effects of Pileup Events 
Pileup, R=0.5, |y|=3Pileup, R=0.5, |y|=3120 GeV Z’

1033

1034

Forward tag 
jets, ET~ 40 
GeV

1035

1034

400 GeV in R=0.5 cone
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PilePile--up Missing Etup Missing Et
Study done for CMS. Three major sources of detector induced  missing ET
– incomplete angular coverage, B field “sweeping” to small angles and 
calorimetric energy resolution. 
Clearly need radiation hard calorimetry to go to smaller angles – as C.M. 
energy increases particularly. Presently dose < 1 Grad at |η| = 5.
At SLHC, pileup events create a background of ~ 5GeV * sqrt(62) = 40 
GeV ET-miss / crossing. Fatal for W’s, no problem for SUSY.

Event Missing Et - 6.7 GeV Total

max y

B field

dE calor

<ET-miss>/minbias
event vs eta coverage

Contributions to ET-miss for 
minbias events



J. Freeman   FNAL  Oct 17, 2003 51

Intrinsic LimitationsIntrinsic Limitations
Transverse size set by shower extent, 
either Xo or λ -> limit to tower size.
Longitudinal depth set by containment to 
~ 10 λ. Limit on depth set by jet leakage.
Speed needs to be fast enough to identify 
bunch crossing (25 ns/LHC ; 12.5 
ns/SLHC; 18 ns VLHC)
Jet resolution limited by FSR at LHC, 
not calorimeter energy resolution.
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New Calorimeter DesignNew Calorimeter Design

Speed is very important (12.5ns bunch spacing)
Radiation resistance critical
Any new calorimeter will be designed with 
Energy Flow in mind. To take good advantage of 
Energy Flow, ~5X5 cm HCAL tower size
Limited longitudinal segmentation
10-12 λ thick
Energy resolution not too important.
Can see two variants: 

ATLAS-like liquid ionization 
CMS-like optical 

If you are building a new calorimeter for SLHC/VLHCIf you are building a new calorimeter for SLHC/VLHC
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SummarySummary
ATLAS and CMS Hadron calorimeters will need upgrade for 
SLHC
New algorithms (Energy Flow) improve jet resolution. Ultimate 
limits of method include finite shower sizes. Unfortunately 
utility decreases for increasing jet energies.
Final State radiation remains major limitation to di-jet mass 
resolution. Address this with improved analysis methods?
Studies of higher mass states will require higher luminosity 
which will put in premium on radiation resistance.
Colliders with increased luminosity and energy will require 
detector development:

Cerenkov calorimeters
Replacement fluids for LAr in forward regions
Advanced photodetectors
Improved materials (scintillators or quartz fiber)
Possible new directions (gas-cerenkov calorimeter)
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